Explore Simple Game Algorithms with Color Walk: Part 7

We're continuing to explore different game algorithms using the simple game Color Walk. In the last post we took a deep dive into other heuristics that could be used instead of the obvious maximize-the-number-of-blocks-removed approach and found that the obvious choice is actually hard to beat. After looking at various heuristics, it's time we fill in some gaps in our exploration of algorithms by looking at a couple of fundamental graph algorithms: breadth-first search (BFS) and depth-first search (DFS). These algorithms are the two basic ways to search for something in a graph of nodes (or vertices) connected by edges, and a graph is exactly what we have when we draw out all possible move choices with each node representing a move and edges connecting sequential moves. We'll focus on BFS for this post.

Explore Simple Game Algorithms with Color Walk: Part 6

What's next with exploring different game algorithms using the simple game Color Walk? We've come a long way so far with building out the game's interface to support looking at different algorithms, looking at trivial round-robin and random algorithms, and designing a greedy algorithm that picked each move based on the most blocks removed. The last post showed how far we could push the greedy algorithm to look ahead and try to pick a better move that would result in more blocks removed up to five moves ahead, but even after improving the data structure for the board, we hit diminishing returns in looking more moves ahead. It's time to expand our search for algorithms by looking at other heuristics we can use to pick the best move. The greedy algorithm used a heuristic of "the most blocks removed" for any given move, but there are others that we can use.