I'm starting to dabble in machine learning. (You know it's all the rage now.) As with anything new, I find it most effective to pick out a couple of books on the subject and start learning the landscape and the details straight away. Online resources are good for an introduction, or to find answers to specific questions on how to get a particular task done, but they don't hold a candle to the depth and focus that you can find from reading about a subject in a well-written book. Since I'd already had some general exposure to machine learning in college, I wanted to work through a couple of books that focused on how to do data analysis and machine learning in a practical sense with a real language and modern tools. Python with Pandas and Scikit-Learn has a huge community and plenty of active development right now, so that's the route I went with for this pair of books. I selected
Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython by Wes McKinney to get the details of using the Pandas data analysis package from the author of the package himself. Then I chose
Python Data Science Handbook: Essential Tools for Working with Data by Jake VanderPlas to get more coverage of Pandas from another perspective and expand into some of the Scikit-Learn tools available for machine learning. Let's see how these two books stack up for learning to make sense of large amounts of data.
 | VS. |  |